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Non-linear Model Predictive Control of Cabin
Temperature and Air Quality in Fully Electric

Vehicles
Jan Glos, Lukáš Otava, Pavel Václavek, Senior Member, IEEE

Abstract—This article describes an application of Non-linear
Model Predictive Control algorithms on energy efficient control
of fully electric vehicle cabin temperature and air quality. Since
fully electric vehicles can not utilize waste heat from a powertrain
(or there is not enough waste heat) as ICE vehicles do, it is
necessary to employ advanced control approaches (especially for
cabin heating) due to the possible mileage lost by using energy
from the batteries for cabin conditioning. The basic idea behind
this is to avoid the heat losses caused by excessive air exchange
and to ensure a satisfactory air quality in combination with a
user defined temperature. The Non-linear Model Predictive con-
trol algorithms were successfully implemented into an Infineon
AURIX Tricore microcontroller and tested within a Processor in
the Loop simulation.

Index Terms—non-linear model predictive control, fully elec-
tric vehicle, battery electric vehicle, vehicle cabin model, Ex-
tended Kalman filter, air quality control, temperature control

NOMENCLATURE

COP Coefficient of Performance
EKF Extended Kalman Filter
EV Electric Vehicle
FEV Fully Electric Vehicle
FMU Functional Mockup Unit
HVAC Heating, Ventilation, and Air Conditioning
HX Heat Exchanger
ICE Internal Combustion Engine
ISR Interrupt Service Routine
MCU Microcontroller unit
MIL Model in the Loop
MPC Model Predictive Control
NMPC Non-linear Model Predictive Control
OCP Optimal Control Problem
PHEV Plug-in Hybrid Electric Vehicle
PIL Processor in the Loop
PTC Positive Temperature Coefficient (heater)
SIL Software in the Loop
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c Specific heat capacity
C Heat capacity
f Frequency
G Thermal conductance
H State-space representation output matrix
I Electric current
ṁ Mass flow rate
P Power consumption
Q Heat
Q̇ Heat flow rate
Q Weighting matrix
r State-space representation references vector
T Temperature
u State-space representation input vector
U Voltage
V Volume
V̇ Volume flow rate
W Work
x State-space representation state vector
z State-space representation output vector
ρ Volumetric mass density
κ Air quality

I. INTRODUCTION

Fully electric vehicles (FEV) require special approaches for
cabin heating, as the classical solution adapted from internal
combustion engine (ICE) vehicles is not satisfactory from
the perspective of energy consumption. ICE vehicles utilize
waste heat from the ICE for cabin heating. The ICE’s tank-to-
wheel efficiency is usually 20 % to 40 %, and approximately
30 % of total energy can be used for cabin heating [1]–[3]. If
we consider a petrol ICE, the energy density is 34.2 MJ l−1.
For city driving with an average speed of 40 km h−1 and an
average fuel consumption of 8 l/100km, there is an available
thermal flow of 9 kW on average for cabin heating.

On the other hand, the electric vehicle (EV) powertrain has
a much higher overall efficiency (67 % to 82 %), with approx.
10 % to 25 % converted to waste heat [4]. As a result, the
EV generates a maximum waste heat flow rate of approx.
0.85 kW to 2 kW under the same conditions as for the ICE
vehicle above. Moreover, part of this thermal flow is from
a low potential source, as the batteries temperature can not
be higher than approx. 30 °C to 40 °C. Thus, the coolant
temperature will be even lower and the use for cabin heating
is quite complicated. The waste heat recovery makes sense in
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combination with the use of a heat pump system, which would
elevate the temperature for cabin heating.

It needs to be mentioned that waste heat recovery for EVs
is not state-of-the-art technology, and there is no common
understanding among the manufacturers. Current EVs use
positive temperature coefficient (PTC) heaters, air to water
heat pumps, or their combination, as a heat source [5].

Regardless of the heat source, a cabin heating system needs
to be powered from batteries and the power consumption
negatively influences the mileage of the EV. An extremely
unpleasant choice can occur when the user needs to decide if
the EV will heat the cabin or reach its destination.

This paper proposes a partial solution to this problem.
The basic goal is to keep the range of the EV as long as
possible, which means minimizing the energy needed for cabin
heating. This target can be achieved by multiple methods, and
preferably by their combination

• minimizing the cabin thermal losses through walls and
windows (insulation etc.)

• minimizing the thermal losses through cabin ventilation
• improvement of the heat source (e.g. from a PTC heater

with a coefficient of performance (COP) of 1.0, to a heat
pump with a COP of 1.5 to 3)

• waste heat recovery from the electric motor, power elec-
tronics and battery

• utilization of thermal energy storage (based on phase-
change material)

This work is focused on the second bullet point, and brings
an increased range to the EV by minimizing the heat losses
through ventilation, using advanced control of the cabin heat-
ing actuators.

The other bullet points require complex changes to a vehi-
cle, especially in mechanical design, obviously with influence
on the electrical system, thermal management system and
also the control algorithms. However, the benefits of proper
ventilation and the heating control approach should be the
highest (compared to other methods, where the major benefits
mostly come from proper design), so the paper is focused on
this method.

It is obvious that with full cabin air recirculation, mini-
mal heat requirements would be achieved. Nevertheless, this
approach can not be used, as no fresh air will be supplied
to the cabin and thus the air quality will be deteriorated by
means of a higher carbon dioxide (CO2) concentration. High
concentrations of CO2 can lead to driver (and also passenger)
fatigue [6]. Moreover, the cabin air humidity can increase
and under some conditions windows can get fogged, leading
to a limited driver view. Both these problems can negatively
influence the driver comfort and attention, which could in the
worst case cause an accident.

In this article, the C-segment passenger car (or its equiva-
lent, like the US compact car) is considered to have a cabin
compartment volume of 3000 l and length of approx. 4.5 m.

As a first preview to the required thermal flows for vehicle
cabin heating, we performed a set of simulations, whose results
are presented in Fig. 1 and 2. We evaluate the results using
three variables. First, κ stands for the cabin air quality, which
is dependent on HVAC fan speed and fresh air flap setting.

TABLE I: Actuators and conditions for basic cabin thermal
flow simulations

Actuator/condition name Symbol Value

Coolant mass flow rate ṁh5 0.4 kg s−1

Air mass flow rate ṁc 0.07 kg s−1

Thermal flow to coolant Q̇h10 dependent

Fresh air flap ϕ independent

Cabin air quality κ dependent

Number of passengers npas 2

Ambient temperature Tc5 −10 °C

Cabin temperature reference Tc1 20 °C

The second and third variables are used to measure the heat
supplied into the cabin (which needs to be generated from
electric energy in batteries by a heat pump or PTC and thus
affects the EV range). We use a heat requirement Q as a
variable describing total thermal energy provided into the
cabin during some period (30-minute drive including heat
build-up in Fig. 1). Then we use variable heat flow rate Q̇ to
show the instantaneous steady-state heating power required to
compensate the thermal losses of the cabin with keeping the
cabin temperature at the defined reference temperature. The
simulations were executed in Dymola, based on the model
described in section II-E, with constant controls (apart from
the heat source and fresh air flap) and ambient conditions,
defined in Table I.

In Fig. 1, there is the heat required for cabin heat build-up
during a 30 minute drive presented. All the vehicle parts were
initially at the ambient temperature and then we started heating
up the cabin, and this process was repeated for different
settings of the fresh air flap ϕ ∈ {0, 10, 25, 50, 75, 100} (%).
This setting was kept constant during the individual simulation
runs and the results for the dependent variables of all the runs
are shown in Fig. 1. It is evident that both the required heat
and the resulting cabin air quality are strongly dependent on
the fresh air flap setting. Then, two important conclusions can
be obtained from Fig. 1:

1) The fresh air flap - needs to be kept above approx. 25 %
to achieve satisfactory cabin air quality (κ ≈ 1000 ppm;
considering 2 passengers and ṁc = 0.07 kg s−1; with
possible short-term lower values of the fresh air ratio)

2) A heat source in the order of kW (e.g. 4 kW to 8 kW) is
needed for cabin heat build-up (note: even all the waste
heat from an EV powertrain is not sufficient).

Then we introduce Fig. 2, which presents the steady-state
heat flow rate dependency on the fresh air flap setting. It is
evident that the fresh air flap can not be entirely closed (full
recirculation) and that the heat flow rate is highly dependent
on its value.

Regarding the influence of cabin heating on vehicle range,
in the worst case (under conditions defined in Tab. I), the heat
source would consume approx. 2.3 kW h per cabin heat build-
up and 3 kW h per each hour of driving, with a higher air mass
flow rate the power consumption would be also higher. For a
mid-size EV (such as a Mercedes B, Nissan Leaf) that means
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Fig. 1: Heat required by a heating system for cabin heat build-
up during a 30 minute drive (conditions defined in Tab. I)

a loss of mileage by 7.6 % due to cabin heat build-up and
10 % per each hour of operation. This model case didn’t take
into account the power consumption of the fan and coolant
pump, a possible lower ambient temperature, heat losses in
the engine compartment, and other influences that might make
the range loss even higher. The conclusion from this analysis
is that cabin heating can have a strong negative influence on
EV range.

At this point, we should summarize the requirements on
cabin environment control:

1) Temperature - keep it at a (user) defined reference
2) Air quality - keep it at a reasonable value (approx.

600 ppm to 1000 ppm, short time up to 1500 ppm)
3) Power consumption - minimize power of the heat source,

fan and coolant pump
4) Noise - keep the fan speed as low as possible

The controlled system control inputs are constrained, more-
over, its internal states and outputs are constrained too (e.g.
supply air temperature should not exceed 60 °C, coolant tem-
perature 90 °C, etc.).

Considering the above requirements, one of the preferable
control approaches is Non-linear Model Predictive Control
(NMPC). The traditional control approaches introduce a high
number of additional control references, switching between
control scenarios (e.g. heat build-up, steady-state, etc.), and
complicated state constraints compliance. Moreover, the sys-
tem has four inputs, two outputs, significant cross-couplings
between inputs, and outputs and power consumption optimiza-
tion is required. In the end, the traditional control system
would become overcomplicated, thus the NMPC approach is
preferable from our perspective.

Cabin thermal management algorithms using NMPC and
linear-quadratic strategy were proposed in [7], where the
authors assembled vehicle cabin and HVAC model (including
humidity and carbon dioxide concentration), which they then
used for algorithms design and verification by simulation.
Model predictive control combined with the neural network
was used in [8] for automotive compressor speed control
and their solution brings substantial improvement of cabin
temperature reference tracking and disturbance rejection. A
hierarchical MPC scheme was proposed for combined cabin
and battery thermal management in [9]. Their approach can
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Fig. 2: Heat flow rate needed for cabin heating in a steady
state (conditions defined in Tab. I)

cover different dynamics (relatively fast and slow) in the
vehicle thermal management system. MPC combined with
different forecast methods of passenger number was prepared
in [10] for cabin temperature control of an electric bus. The
Markov-chain based prediction gave them the lowest energy
consumption of the HVAC system. Nonlinear model predictive
control was used in [11] for vehicle cabin temperature control
with evaporator temperature setpoint and blower speed as
controlled variables.

NMPC applied on Plug-in Hybrid Electric Vehicle (PHEV)
thermal management (battery, charger and power electronics
cooling) was successfully tested in a Software in the Loop
(SIL) simulation [12] and then tested in the real environment
[13]. Model predictive on-off control for cabin heating in
ICE vehicles was developed and implemented in [14]. The
HVAC system, including the heat pump, was successfully
controlled by NMPC in [15] with NMPC running on an
Intel i5 2.6 GHz quadcore processor of a laptop. The model
of the automotive air-conditioning/refrigeration system with
cargo was assembled in [16] and the authors showed that
several different types of MPC controllers provide substan-
tially better performance (in terms of power consumption and
cargo temperature reference tracking) compared to the on/off
controller. There are also several papers on cabin air quality
and ventilation, such as [17], [18], but none of them links the
air quality with power consumption for heating. The indoor
air quality control is quite often used in building environment
control, in combination with MPC, reported, for example by
[19]. The authors of [20] proposed linear MPC for vehicle
cabin heating, and in conclusion they call for considering cabin
air recirculation in an MPC control strategy.

Model predictive control is also widely used in different
automotive applications, especially for fuel consumption re-
duction [21]–[24], path tracking [25], [26] and cruise control
[27]–[29].

As far as we at best know, there is no implementation of
NMPC in an automotive grade processor in series production
for EV cabin heating with respect to cabin air quality.
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II. FEV HVAC DYNAMIC MODELS

A vehicle cabin (complemented with an HVAC system) is
quite complicated to be modelled from a thermal point of view.
It consists of a high number of materials, including both the
thermal insulants (foam, plastics etc.) and thermal conductors
(metal, glass, etc.). There are also a lot of other influences
on cabin thermal behaviour, such as the radiative thermal flow
from the sun, passenger thermal flow, forced convection during
driving, ventilation using windows, etc.

Thus, the model describing all the above mentioned effects,
and reflecting all the heat transfer types (like Dymola reference
model in Subsection II-E), would be very complicated and
not useful for NMPC design. Therefore, the structure of the
model was simplified to represent a grey box model, where the
structure is fixed and the parameters are guessed, or identified,
and can be considered as lumped (e.g. the thermal flow through
the cabin walls are represented by single thermal conductance
Gc1, which has no representation in a real system, but is used
as a cumulative variable).

A. HVAC Thermal Model

The simplified HVAC system in Fig. 3 can be described by
the following set of equations

Ch1
dTh1

dt
= Q̇h7 + Q̇h5 − Q̇h6, (1)

Ch3
dTh3

dt
= Q̇h9 − Q̇h8 − Q̇h7, (2)

Ch4
dTh4

dt
= Q̇h8 − Q̇h9 + Q̇h10, (3)

where C denotes thermal capacity, T stands for thermody-
namic temperature, and Q̇ is a general thermal flow rate.

Heat exchanger 1 (HX1) is used as a condenser and the
refrigerant is rejecting heat into the coolant with a temperature
of Th4, and it is circulated by the coolant pump (P1). HX1
and the heat flow rate Q̇h10 could be replaced by another heat
source (PTC, etc.) for a different application. The air is heated
by the coolant in HX2 and then supplied to the vehicle cabin.
The temperature of the cooled coolant at the HX2 outlet is
denoted as Th3 and Th1 stands for a temperature of heated air.
The air from the cabin (with a temperature of Tc1) can be
exhausted outside or reused by operating a fresh air flap. The
fresh air flap mixes the recirculated air from the cabin with the
fresh air of temperature Th5 and the resulting air temperature at
the flap outlet is marked as Th2. The air movement is assured
by the HVAC fan (F1).

We assume that the fan and pump speeds can be controlled
and the heat flow rate Q̇h10 can be adjusted by compressor
speed control (or, in general, by heat source control for a
Positive Temperature Coefficient (PTC) heater, etc.).

The heat flow rates from Fig. 3 can be expressed as

Q̇h5 = ṁh1chTh2, (4)

Q̇h6 = ṁh1chTh1, (5)

Q̇h7 = Gh7(Th3 − Th1), (6)

Q̇h8 = ṁh5ccoTh3, (7)

Q̇h9 = ṁh5ccoTh4. (8)

Fresh air
Th5, ch, ṁh4

Exhaust air
ṁh3

Refrigerant
inlet

Refrigerant
outlet

Cabin
Tc1, Cc1

Th1, Ch1

Th3, Ch3

Th4, Ch4

Th6

Flap
Th2

F1

P1

Q̇h6 = Q̇c5

Q̇h1 = Q̇c6

Q̇h5

ṁh1 = ṁc

Q̇h7

Q̇h8

ṁh5

Q̇h9

Q̇h10

HX2

HX1

Air loop

Coolant loop

Fig. 3: FEV HVAC model

The heat flow rate between the coolant and the air in the
HX2 is described by (6), what is the most simple expression
of heat exchanger thermal flow rate, which is dependent on
media temperatures and thermal conductance Gh7. The rest of
the equations above are based on the Simplified Steady-Flow
Energy Equation (SSFEE) from [30]. In the equations, ṁh1
stands for the air mass flow rate caused by the HVAC fan, ch
is the air specific thermal capacity, ṁh5 is the coolant mass
flow rate caused by the coolant pump, and cco is the coolant
specific thermal capacity.

After substitution of (4-8) to (1-3), and minor modifications,
a new set of equations can be obtained

dTh1

dt
=

1

Ch1
[Gh7(Th3 − Th1) + ṁh1ch(Th2 − Th1)], (9)

dTh3

dt
=

1

Ch3
[ṁh5cco(Th4 − Th3)−Gh7(Th3 − Th1)], (10)

dTh4

dt
=

1

Ch4
[ṁh5cco(Th3 − Th4) + Q̇h10], (11)

Th2 = ϕTh5 + (1− ϕ)Tc1, (12)

where ϕ is the fresh air flap status (0 to 1) and it is used
for mixing the fresh and recirculated air and computing the
resulting temperature.

The cabin model (represented by a block in the lower-left
corner in Fig. 3) is described in detail in the following section.
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B. Cabin Thermal Model

The cabin model overview can be found in Fig. 4. The
model can be in general described by the following equations

Cc1
dTc1

dt
= Q̇c1 + Q̇c2 + Q̇c5 + Q̇c4 + Q̇c3 − Q̇c6, (13)

Cc2
dTc2

dt
= −Q̇c3, (14)

Cc3
dTc3

dt
= −Q̇c1 + Q̇c7 + Q̇c8, (15)

Cc4
dTc4

dt
= −Q̇c2 + Q̇c9, (16)

where Tc1 is the cabin air temperature, Tc2 stands for a
temperature of the cabin equipment (seats, dashboard, etc.),
Tc3 is the temperature of the cabin walls, and Tc4 is the
temperature of the windows. The thermal capacities Ccx are
indexed in the same manner as the temperatures.

The equations above can be then modified to the substituted
form

dTc1

dt
=

1

Cc1
[Gc1(Tc3 − Tc1) +Gc2(Tc4 − Tc1)

+ ṁccc(Th1 − Tc1) + Q̇c4 +Gc3(Tc2 − Tc1)], (17)
dTc2

dt
=

1

Cc2
[−Gc3(Tc2 − Tc1)], (18)

dTc3

dt
=

1

Cc3
[−Gc1(Tc3 − Tc1) + Q̇c7

+Gc8(Tc5 − Tc3)], (19)
dTc4

dt
=

1

Cc4
[−Gc2(Tc4 − Tc1) +Gc9(Tc5 − Tc4)], (20)

where ṁc = ṁh1 and stands for the air mass flow rate through
the cabin (caused by the HVAC fan), cc = ch and is the air
specific thermal capacity, Q̇c7 is the solar heat flow rate and
Q̇c4 is the passenger heat flow rate. The cabin air inlet and
outlet is described by Q̇c5 and Q̇c5, respectively, and then
expressed using SSFEE (similarly as for HVAC model). The
rest of the heat flow rates represent conductive, convective,
and radiative thermal transfers between the cabin parts. For
simplicity of the model, all the heat transfer types between
two parts are aggregated into a single equation term, which
is dependent on part’s temperatures and associated thermal
conductance Gcx, where the index corresponds to the general
heat flow rate index (Q̇cx). The thermal conductances are
generalized constants, which were identified and have no
physical representation (can not be computed based on part
materials and dimensions).

C. Cabin air quality model

We can define the air quality in the most used form [31],
i.e. as a ratio of CO2 to the whole (cabin or any unit). The
air quality can be expressed in percent or in ppm (commonly
used for indoor air quality evaluation [31], [32]).

The air quality model we developed consists of two com-
ponents - human respiration and HVAC air exchange. The
first component is modelled based on the fact, that during
every inhale some amount of the air (of cabin air quality)
is removed from the cabin and during the exhale, the same

Cabin air mass
Tc1, Cc1

Cabin walls
Tc3, Cc3

Cabin windows
Tc4, Cc4

Cabin equipment
Tc2, Cc2

Air in
Th1, cc, ṁc

Air out
Tc1

Solar heat flow Ambient temperature Tc5

Passenger heat flow

Q̇c5 Q̇c6

Q̇c7

Q̇c1 Q̇c2

Q̇c8

Q̇c9

Q̇c3 Q̇c4

Fig. 4: FEV cabin thermal model

amount of the air (of deteriorated quality) is returned into the
cabin. The second component describes the ventilation of the
cabin similarly - HVAC air volume flow rate brings and takes
away the air of different quality. Moreover, the ventilation
performance is controlled by the fresh air flap.

The behaviour of air quality inside a vehicle cabin can be
described by

V
dκ

dt
= npasV̇res(κex − κ) + ϕV̇HVAC(κamb − κ), (21)

where κ is cabin air quality, κex the exhaled air quality, κamb
the ambient air quality, V̇res is respiratory volume flow rate,
V̇HVAC the volume flow rate of the HVAC, npas is the number of
passengers in the vehicle, ϕ is the fresh air flap state (ϕ = 1:
only fresh air, ϕ = 0: only recirculated air) and V is the cabin
volume.

Respiratory volume flow rate can be computed as

V̇res = fresVres, (22)

where fres = 0.25 Hz is respiratory frequency and Vres =
0.0005 m3 is respiratory volume [33], which leads to

dκ

dt
=

1

V

[
npasfresVres(κex − κ) + ϕ

ṁc

ρc
(κamb − κ)

]
, (23)

where ṁc is the air mass flow rate defined in Subsection II-B
and ρc stands for cabin air mass density.

D. Overall cabin and HVAC model

The resulting dynamic model of the FEV cabin and HVAC
was prepared as a combination of the equations above

ẋ = f(x,u), (24)
z = h(x), (25)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 202X 6

Fig. 5: Reference model of the cabin and HVAC in Dymola

with state (x), input (u) and output (z) vectors

x =
[
Tc1 Tc2 Tc3 Tc4 Th1 Th3 Th4 κ

]ᵀ
,

u =
[
ṁh5 ṁc Q̇h10 ϕ

]ᵀ
,

z =
[
zTc1 zTh1 zTh4 zκ

]ᵀ
, (26)

and f(·) stands for the right-hand sides of (9-11, 17-20, 23) and
h(·) is a vector of the output functions. The output functions
are linear, thus we can write

z = h(x) = Hx, (27)

where

H =




1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


 . (28)

E. Cabin and HVAC reference model in Dymola

A reference model of the FEV cabin and HVAC system was
set up in Dymola using the ThermalSystems library, which
was extended to suit the requirements (air quality modelling,
additional temperature measurements). The Dymola model is
significantly more complicated compared to the differential
equations in previous subsections. The model was exported
into a Functional Mockup Unit (FMU), which was then
imported into the MATLAB Simulink environment using the
FMUtoolbox [34]. The FMU represents a black box model of
the cabin and HVAC system and is used as a substitution of a
real FEV cabin and HVAC system for algorithms’ verification.

An overview of the Dymola model is in Fig. 5, where the
connectors were intentionally omitted to increase the clarity
of the figure.

F. Simplified dynamic model verification

The simplified cabin and HVAC thermal models (subsec-
tions II-A and II-B) were compared to the Dymola reference

Fig. 6: Simplified HVAC and cabin model verification against
Dymola reference model during cabin heat build-up

model (subsection II-E). The results of the simulations are
presented in Fig. 6 and Fig. 7.

In Fig. 6 a cabin heat build-up is shown. This simulation
result is included to show the conformity of the simplified
model and Dymola model on the long term horizon. The
control inputs were kept constant during the whole simulation.
We can see that there is a small inaccuracy of both the cabin
air temperature and supply air temperature at the time of 180 s,
but the overall conformity of the models is satisfactory.

In Fig. 7 there is a simulation showing actuators changes and
the reaction of both the dynamic models. There are almost no
significant deviations of the simplified model and the reference
Dymola model.

Thus we can conclude that the simplified model shows very
good conformity to the reference Dymola model and it can be
used for NMPC algorithm design.

III. NMPC PROBLEM FORMULATION

At each time step of the NMPC algorithm, an optimal
control problem (OCP) needs to be solved [35]

min JN (x0,u(·)) =
N−1∑

k=0

‖l(xk,uk)− rk‖2Q

+‖lN (xN )− rN‖2QN
, (29)
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Fig. 7: Simplified HVAC and cabin model verification against
Dymola reference model for actuators’ changes

subject to

x0 = x̂0, (30)
xk+1 = f(xk,uk), (31)

xlo
k ≤ xk ≤ xup

k , (32)

ulo
k ≤ uk ≤ uup

k , (33)

where l(·) and lN (·) are vectors of penalized variables, rk and
rN stand for time-varying and final references, Q and QN

are weighting matrices. Then x denotes the discrete states, u
the control input. Both the states and control inputs can be
constrained by (32) and (33).

To allow constraints on control changes and their pe-
nalization, the model was slightly modified. The controls
u =

[
ṁh5 ṁc Q̇h10 ϕ

]ᵀ
are now considered as ad-

ditional states and we use a new controls vector ∆u =[
∆ṁh5 ∆ṁc ∆Q̇h10 ∆ϕ

]ᵀ
and the additional set of dif-

ferential equations

d

dt




ṁh5
ṁc

Q̇h10
ϕ


 =




∆ṁh5
∆ṁc

∆Q̇h10
∆ϕ


 . (34)

This approach allows us to define constraints on control input
changes, which is important when considering real actuators
such as the air flap, coolant pump, etc., which have a limited

Fig. 8: HVAC fan and coolant pump current measurements
and approximations

Fig. 9: FEV HVAC test bench (used for actuators’ electric
current dependency calibration and power consumption assess-
ment, not for experimental verification)

control input change rate. Moreover, it is possible to intro-
duce penalization of these changes, as fast changes are not
convenient (especially for mechanical actuators).

The previously described change of control variables also
ensures a zero steady-state error (offset free tracking), as
shown, for example, in [36].

The model of the HVAC fan and coolant pump was cal-
ibrated on a test bench (Fig. 9) with real components by
measurement of their characteristics (with focus on power
consumption). The resulting data are shown in Fig. 8 (labelled
as ”measured”).

Then a formula describing the dependency of electric cur-
rent on mass flow rate was found for each of these actuators,
to allow their comparison (under a constant input voltage
U = 12 V). Both the fan and pump employ a fan load
characteristic, which means that motor torque is dependent
on the squared angular speed, and the input power (and thus
current) depends on the third power of angular speed. The
volumetric flow rate and mass flow rate are approximately
linearly dependent on the fan/pump motor angular speed. The
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HVAC fan electric current can be written as

Ifan = afan(ṁfan)3, (35)

where Ifan is the electric current of the HVAC fan, afan is a
constant characterizing the fan and HVAC air distribution box
(in our case, afan = 6443). Then ṁfan is the air mass flow rate
through the fan.

The coolant pump electric current can be described by

Ipump = apump(ṁpump)3, (36)

where Ipump is the electric current of the coolant pump, apump
is a pump and pipes constant (in our case, apump = 194), and
ṁpump is the coolant mass flow rate caused by the pump.

The specific values of the fan and pump constants (afan
and apump) were acquired by fitting the general formulae
to measured electric current. The comparison of measured
values and results from (35) and (36) are in Fig. 8, and the
correspondence is satisfactory.

From (35) and (36) it is evident that the penalization of
the HVAC fan should be approximately thirty times higher
compared to the coolant pump to ensure comparability of
power consumption.

To accomplish the basic goal of energy efficient control, the
overall power consumption needs to be minimized. This can
be computed as

Pel = Pfan + Ppump + Pheat, (37)

where Pel is overall electric power consumption, Pfan and
Ppump are electric power consumptions of HVAC the fan
and pump respectively, and Pheat stands for electric power
consumption of the heat source utilized to provide heat flow
Q̇h10. After minor modifications and substitutions, we can
write

Pel = U [afan(ṁc)
3 + apump(ṁh5)3] +

Q̇h10

COP
, (38)

where U = 12 V is battery voltage and COP stands for
coefficient of performance

COP =
|Q|
W

, (39)

where Q is the heat supplied to the coolant and W is the
work required for that. If we consider purely electric heating,
COP = 1, for heat pump systems, we expect COP ∈ (1.5, 3).

The contribution of actuators to overall electric power
consumption is illustrated in Fig. 10 for maximal values of
actuators speed (causing maximal power consumption). In this
example heat pump system is considered, if the PTC heater
was a heat source, its percentage would be much higher.

The resulting vectors of penalized variables are

l(xk,uk) =
[
xᵀ

l uᵀ
l ∆uᵀ

l

]ᵀ
, (40)

lN (xk) =
[
xᵀ

l uᵀ
l

]ᵀ
, (41)

where penalized state vector is

xl = Rxxk, (42)

penalized controls vector

ul = Ruuk, (43)

Pfan

382.8W: 8.5%

Ppump

99.6W: 2.2%

Pheat

4000W: 89.2%

Fig. 10: Maximal power consumption of heating actuators,
for a heat pump with COP = 2 and maximal thermal power
Q̇h10 = 8000 W

and penalized controls change vector

∆ul = R∆u∆uk, (44)

with R being the helper scaling matrices.
The weighting matrices Q and QN were initially set up

with respect to (38), and then fine-tuned considering the
user comfort point of view - the fan speed penalization was
increased. Thus, the weighting matrices were slightly changed
to fulfill all the requirements defined in section I. As a result,
the power consumption would probably not be the optimal,
but we can reach a satisfactory suboptimal trajectory of the
system with accomplishment of the user requirements.

The following set of state constraints was introduced

0 ≤ Th4≤ 273.15 + 90 (K), (45)
0 ≤ Th1≤ 273.15 + 60 (K), (46)

which represent the maximum allowed temperatures of coolant
and supplied air respectively. The control constraints

0.04 ≤ ṁh5 ≤ 0.42 (kg s−1), (47)

0.03 ≤ ṁc ≤ 0.17 (kg s−1), (48)

0 ≤ Q̇h10 ≤ 8000 (J s−1), (49)
0 ≤ ϕ ≤ 1 (−), (50)

respect the real possibilities of the considered system. The
coolant and air mass flow rates were measured on our test
bench (Fig. 9), the heat flow rate is a guessed value for a heat
pump system and can be adjusted based on the heating device
(heat pump, PTC, etc.). The fresh air ratio range is derived
from its definition.

Then we also introduce constraints on the control changes

−0.05 ≤ ∆ṁc ≤ 0.05 (kg s−2), (51)

−0.05 ≤ ∆ṁh5 ≤ 0.05, (kg s−2) (52)

−400 ≤ ∆Q̇h10 ≤ 400 (J s−2), (53)

−0.1 ≤ ∆ϕ ≤ 0.1 (s−1), (54)
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which also respect the real system capabilities, such as max-
imum possible fan and pump acceleration, fresh flap speed,
etc.

We introduce the reference vector

r =
[
rᵀx rᵀu rᵀ∆u

]ᵀ
(55)

with state references rx, controls references ru and controls
change references r∆u

rx =
[
rTc1 0 0 0 0 0 rTh4 0 rκ

]ᵀ
, (56)

ru =
[
0 0 0 0

]ᵀ
, (57)

r∆u =
[
0 0 0 0

]ᵀ
, (58)

where rTc1 is the cabin temperature reference, rκ is the cabin
air quality reference and, rTh4 is the coolant temperature
reference.

The sampling rate was chosen as Ts = 0.5 s to cover the
fastest dynamics in the controlled system. In combination with
a prediction horizon N = 20, we get a prediction time of 10 s.
The ACADO toolkit [37] (including MATLAB interface)
was used for implementation in MATLAB/Simulink, and also
for C/C++ code generation. A multiple shooting technique [38]
was used for discretization of the continuous-time model. A
quadratic programming solver, qpOASES [39], employing an
active-set method [40], was used to solve the optimization
problem.

IV. EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) from [41] was used to
allow current system states estimation, as they are needed for
NMPC computations.

The part of the state variables from (26) can be directly
measured (cabin air temperature Tc1, supply air temperature
Th1, heated coolant temperature Th4, and cabin air quality
κ), the rest of the temperatures (four of them) needs to be
estimated by EKF.

A discrete-time system model

xk = f(xk−1,uk−1) + wk, (59)
zk = h(xk) + vk, (60)

is needed for both the phases (prediction and update) of the
EKF. The model described above was discretized using the
Euler method in order to get a discrete-time model of the
vehicle cabin and HVAC system.

Then we use the following equations for the prediction
phase of the EKF

x̂−
k = f(xk−1,uk, 0), (61)

P−
k = Fk−1Pk−1F

ᵀ
k−1 + Qk−1, (62)

and the second set of equations for the update phase

Kk = P−
kH

ᵀ(HP−
kH

ᵀ + R)−1, (63)

x̂k = x̂−
k + Kk(zk −Hx̂−

k ), (64)

Pk = (I−KkH)P−
k , (65)

where x̂−
k and x̂k are the a priori and a posteriori state esti-

mates respectively, P−
k and Pk are the a priori and a posteriori

estimate error covariance matrices, Fk−1 is the Jacobian of
function f(·), Qk−1 stands for the process noise covariance
matrix, Kk is the Kalman gain, R is the measurement error
covariance matrix. As the function h(·) is linear, the last term
in (64) was reduced to the product of matrix H and the a priori
state estimate x̂−

k (compared with the standard h(x̂−
k , 0) term).

The ambient temperature (Th5 = Tc5) can be considered
as a measured disturbance, since this variable behaves as an
input to our models (can change in time, it is not a constant,
but we can not influence its value). Thus, we incorporate it
as a measured state with a zero time derivative and its value
is obtained by the EKF. The following equation was added to
the set of the differential equations

dTc5

dt
= 0, (66)

where Tc5 is the ambient temperature.

V. SIMULATIONS

The simulations described within this section were realized
in the MATLAB/Simulink environment.

The cabin and HVAC model was exported from Dymola
into the Functional Mockup Unit (FMU) exchange format and
then imported into Simulink using the FMUtoolbox [34], a
self-developed FMU importing tool for Matlab/Simulink.

A. Model in the Loop

A Model in the Loop (MIL) simulation was the starting
point during the NMPC algorithms tuning. As a first step,
the NMPC algorithms were tested in a pure MATLAB envi-
ronment (m-file script). This step was important for tuning the
very base functionality - constraints, first guess of penalization
matrices, etc.

The NMPC controller was connected to the same plant
(cabin and HVAC) model that was used for the controller
assembly. Thus the state observer was not necessary and the
changes of the model and other settings are quite simple.

The main advantage of the MIL simulation is the speed of
deployment, as C++ code generated based on an m-file script is
automatically built into the mex-file and then simulated under
the MATLAB environment with the possibility to easily plot
the simulation results.

B. Software in the Loop

Software in the Loop (SIL) simulation was performed in
the MATLAB Simulink environment with usage of the C S-
function. The ACADO Code Generation tool was used
to export the highly efficient C-code for NMPC implementa-
tion.

As a plant model, the Dymola model of the cabin and HVAC
was used. The model needs the actuator values as inputs, but
the controller provides only the changes of actuator values.
The discrete integration of actuator values was added to the
EKF algorithms.
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& HVAC
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r
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z
ux̂

MATLAB Simulink & FMUtoolbox

Fig. 11: SIL simulation diagram

NMPC
controller

EKF

TCP/IP

ISR

AURIX Tricore TC299TF

Core 0 Core 1 Core 2

Fig. 12: AURIX Tricore tasks overview

C. Processor in the Loop

The NMPC algorithms were successfully implemented on
an Infineon AURIX Tricore TC299TF microcontroller unit
(MCU), placed on the AURIX Starter Kit TC299. The MCU
contains three cores running at 300 MHz, 8 MB FLASH
(4x2 MB) and 728 kB RAM.

The software tasks were divided between the MCU cores
as shown in Fig. 12. Core 1 provides timing based on
interrupts for the other cores (shown as an interrupt service
routine (ISR) task), by setting the execution flags at a defined
frequency. This core also ensures the TCP/IP communication
with the MATLAB Simulink (illustrated in Fig. 13). Core 0 is
responsible for EKF execution and the NMPC algorithms are
running within Core 2.

In Fig. 13, there is a diagram of the Processor in the Loop
(PIL) simulation. The references (r) and measured outputs (z)
from the Dymola model (running under MATLAB/Simulink)
are sent to the MCU via TCP/IP communication, and the
controls (u) are sent from the MCU to the MATLAB Simulink
and applied to the Dymola model. As mentioned before (SIL
simulation), the controls from the NMPC controller have to
be discretely integrated before applying them to the Dymola
model.

In Fig. 14, there is a photo of the AURIX Starter Kit
TC299 that was used as the target of the control algorithms
described within this paper. The board is connected via TCP/IP
(see Fig. 13) with a PC, on which the MATLAB/Simulink
environment and Dymola model are running. Moreover, there
are debug and power lines.

r
Dymola cabin

& HVAC
model

NMPC
controller

EKF
Ts
z−1

r

∆u

u z

u

x̂

Infineon AURIX Tricore TC299TF

MATLAB Simulink & FMUtoolbox

TCP/IP

Fig. 13: PIL simulation diagram

Fig. 14: PIL simulation target - Infineon AURIX TC299TF on
the AURIX Starter Kit TC299

D. FEV cabin heat build-up

In Fig. 15 there are results of a simulation of FEV cabin
heat build-up. The simulation conditions were defined as an
average winter day with ambient temperature of −10 °C, and
this temperature was also used as the initial temperature of the
whole vehicle cabin and other equipment. Two passengers are
considered, and no solar flow is present during the simulation.

The cabin temperature reference (rTc1 = 20 °C) was
achieved after approx. 200 s, which is quite an impressive
value. This fast heat build-up is possible thanks to the fully
closed fresh air flap, which has the drawback of slightly
degraded air quality (above 1000 ppm; limited for a short
time). The air quality is improved immediately after the cabin
temperature settles and then it is kept approximately at the
reference value of 900 ppm.
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Fig. 15: NMPC PIL simulation of cabin heat build-up with
ambient temperature Tc5 = −10 °C, two passengers inside the
cabin and no solar heat flow

E. Temperature reference change

Fig. 16 presents the temperature reference change of 2 °C
and the reaction of the NMPC algorithms to this change. The
reference change occurred at the time of 600 s, and the new
reference value of the cabin air temperature was reached after
a very short time, which is possible by coordination of all
the actuators. Both the coolant pump and HVAC fan were
speeded up, heat flow to the coolant was increased by 1200 W
for a short time, and the fresh air flap was closed during the
temperature increase.

The benefits of NMPC are evident from this case, as
multivariable control helps to reduce the time needed for
change of the cabin air temperature. Also, there is no overshoot
and all of the variables are natively kept within the defined
constraints.

F. Disturbance rejection

Two most common disturbances were selected for presen-
tation. The first one is shown in Fig. 17, and was caused by
increasing the number of passengers in the vehicle. Both the
cabin air temperature and quality are affected by this change,
and it can be seen that the temperature is kept approx. at
the defined reference, the air quality got slightly worse, and
there remains some steady state error. This is caused by a
conservative penalization value of the air quality, as it doesn’t

Fig. 16: PIL simulation of cabin temperature reference step

have to strictly track the reference, but it needs to be kept
within a reasonable range (e.g. 800 ppm to 1200 ppm). Thus,
the steady state error is the trade-off between the air quality
and the power consumption needed for cabin heating. The
fresh air flap position was moved from approx. 20 % to 50 %
as an appropriate response to this disturbance.

The second disturbance is represented by ambient tempera-
ture change, which affects both the thermal losses through the
cabin walls and the inlet fresh air temperature. In Fig. 18, there
are results of the simulation with a step change of ambient
temperature at the time of 600 s from −10 °C to 0 °C. Both
the cabin temperature and air quality track the references, and
only the decrease of the heat flow Q̇h10 is perceptible.

VI. CONCLUSION

This article introduced Non-linear Model Predictive Control
for Fully Electric Vehicle cabin temperature and air quality
control. The final solution is suboptimal from an electric
energy consumption perspective, as passenger comfort was
also taken into account during algorithm tuning.

The novel contribution of the paper is the idea of an
integrated approach to cabin comfort control (temperature and
air quality), which can bring significant energy savings. Also,
the air quality model, which was developed by us and used for
NMPC algorithms design, is a significant benefit of the paper.
The particular energy saving will depend on many different
conditions (ambient air quality, vehicle occupancy, ambient
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Fig. 17: PIL simulation of disturbance rejection - increase in
the number of cabin passengers

temperature, etc.) and there is no common methodology for
HVAC consumption evaluation.

For a brief overview of our approach performance from an
energy consumption perspective, we defined a test case con-
sisting of an hour drive under cold conditions to demonstrate
the possibilities of energy savings. This test case was simulated
with different cabin air quality reference and the results are
shown in Fig. 19. In accordance with our expectations, air
quality reference has a strong influence on HVAC overall
power consumption. If we consider cabin air quality reference
of 900 ppm, an energy saving of 41.3 % can be achieved
for the defined test case. It should be reminded that this
particular number is only valid for a defined situation and the
real savings will be different due to several reasons. Firstly,
the power consumption is strongly dependent on ambient and
initial conditions. Secondly, a fully open fresh flap is taken
as the baseline (which might not fit all the EVs). Thirdly,
energy savings significantly depend on vehicle occupancy.
Even though the numbers could be different, our approach
would save as much energy as possible under any operating
and ambient conditions (considering the energy losses by cabin
ventilation).

The control algorithms were implemented into an automo-
tive qualified microcontroller, the Infineon AURIX Tricore
TC299TF, and the performance of the algorithms was demon-
strated employing Processor in the Loop simulations.

Fig. 18: PIL simulation of disturbance rejection - ambient
temperature change
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Fig. 19: Possible energy savings using NMPC strategy. Sim-
ulated for single typical configuration: 3600 s vehicle drive
(including cabin heat build-up), initial cabin temperature of
−10 °C, cabin temperature reference of 20 °C, ambient tem-
perature of −10 °C, 2 passengers in the cabin, ambient air
quality of 400 ppm, initial cabin air quality of 600 ppm.

This control approach can substantially help to avoid electric
vehicle range decrease under cold conditions by minimiz-
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ing the amount of exhausted air and thus minimizing the
heat losses through cabin ventilation. In combination with
other approaches (cabin insulation, heat pump systems, waste
heat recovery, thermal energy storage), it could reduce the
disadvantage of electric vehicles during the winter season.
Despite that the approach was aimed at Fully Electric Vehicles
equipped with a heat pump system, it could be (with minor
changes) used in any other vehicles (hybrid, fuel cell, etc.;
with a PTC heater or any other heat source), and even in
other transportation modes (trains, buses, etc.).

At the moment, the proposed approach was verified only in
simulations (MIL, SIL, and PIL) as it was not so far possible
to modify our test bench to allow experimental verification (it
would require a cabin with passengers, which is difficult to
install at our facility). The final application into a Mercedes-
Benz B-Class Electric Drive (W 242) vehicle is planned and
it would require some changes to the fresh air flap shape, as
the current shape does not allow precise control of the fresh
air ratio. Also, it would be necessary to install an air quality
sensor into the vehicle cabin. We plan to push this control
approach to the next level by either modifying our test bench
or implementing it into a real vehicle to allow experimental
verification of the algorithms.

Of course, there are possible improvements of the control
strategy. For example, if the vehicle also contained an outdoor
air quality sensor, then it would enable advanced indoor
air quality control (the vehicle cabin could be ventilated
intensively in fresh air areas). Then, there is the possibility
of incorporating cabin humidity modelling and control into
the NMPC algorithms. That would allow the possibility of
automatic fogging detection and dehumidification control,
which would improve the user experience.

The presented approach is suitable for vehicle standstill
conditions, however, during the vehicle movement, the HVAC
system performance might be influenced by vehicle speed in
terms of HVAC air mass flow rate, higher cabin cooling due
to forced convection, and different heat pump coefficient of
performance (COP). For a final implementation, the mitigation
of these influences would require to measure disturbance air
mass flow rate under different vehicle speeds (for a particular
vehicle) and integration of this dependency into the HVAC
model. The higher heat flow rate to the ambient caused by
forced convection could be assumed as a process disturbance
(which the NMPC can deal with). It would be also possible
to measure the effect of forced convection on thermal losses
and incorporate it into the cabin model. If the vehicle was
equipped with a heat pump system, it would be useful to
dynamically adjust weighting matrices according to current
operating conditions (i.e. COP), which should help the NMPC
algorithms to operate efficiently independently on the vehicle
speed.

The difference between system time constants (units up to
hundreds of seconds) can in the future development lead to
multi-level NMPC algorithms with different sampling periods
(short for heat exchangers, larger for vehicle cabin). As a final
possible improvement, we see the variant coolant temperature
reference rTh4 . Currently, it has a constant value (rTh4 =
50 °C), but it has very low penalization, thus the temperature

Th4 usually exceeds its reference (especially during cabin heat
build-up). We propose to use equitherm regulation, which
would set up the coolant temperature reference based on
ambient temperature and a preconfigured equitherm curve.
This improvement could bring some energy savings due to
lower heat losses, but it will require detailed measurements
for equitherm curve assembly.
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